1,909 research outputs found

    On Space-Time Capacity Limits in Mobile and Delay Tolerant Networks

    Get PDF
    We investigate the fundamental capacity limits of space-time journeys of information in mobile and Delay Tolerant Networks (DTNs), where information is either transmitted or carried by mobile nodes, using store-carry-forward routing. We define the capacity of a journey (i.e., a path in space and time, from a source to a destination) as the maximum amount of data that can be transferred from the source to the destination in the given journey. Combining a stochastic model (conveying all possible journeys) and an analysis of the durations of the nodes' encounters, we study the properties of journeys that maximize the space-time information propagation capacity, in bit-meters per second. More specifically, we provide theoretical lower and upper bounds on the information propagation speed, as a function of the journey capacity. In the particular case of random way-point-like models (i.e., when nodes move for a distance of the order of the network domain size before changing direction), we show that, for relatively large journey capacities, the information propagation speed is of the same order as the mobile node speed. This implies that, surprisingly, in sparse but large-scale mobile DTNs, the space-time information propagation capacity in bit-meters per second remains proportional to the mobile node speed and to the size of the transported data bundles, when the bundles are relatively large. We also verify that all our analytical bounds are accurate in several simulation scenarios.Comment: Part of this work will be presented in "On Space-Time Capacity Limits in Mobile and Delay Tolerant Networks", P. Jacquet, B. Mans and G. Rodolakis, IEEE Infocom, 201

    On the Complexity of Reducing the Energy Drain in Multihop Ad Hoc Networks

    Get PDF
    Numerous studies on energy-efficient routing for Multihop Ad Hoc Networks (MANET) look at extending battery life by minimizing the cost at the transmitting node. In this paper, we study the complexity of energy efficient routing when the energy cost of receiving packets is also considered. We first prove that, surprisingly, even when all nodes transmit at the same power, finding a simple unicast path that guarantees enough remaining energy locally at each node in the network then becomes an NP-complete problem. Second, we define formally the problem of finding a virtual backbone that minimized the overall energy cost and prove that this leads to a new NP-complete problem, that we name Connected Exact Cover. Finally, we provide a fully distributed algorithm to reduce the energy drain due to the number of redundant receptions in MANET protocols by offering a modification of the Multi-Point Relay selection scheme and give some provably optimal approximation bounds

    Approximation Algorithms for Multi-Point Relay Selection in Mobile Wireless Networks

    Get PDF
    Routing is one of the main problems for Mobile Wireless Networks. In the case of infrastructureless multihop wireless networks, the selection of Multi-Point Relays provides efficient routing schemes. As such a selection is NP-hard, an efficient heuristic has been designed and effectively implemented in protocols for Mobile Ad Hoc Networks such as the Optimized Link State Routing protocol (OLSR). In this paper, we introduce two variants of this practical heuristic by exploiting the topological properties of the network (without assuming a knowledge of geographic positions or geometric properties). For each heuristic, we give their respective guaranteed approximation performances when compared to a solution of optimal value. We argue that the heuristics proposed are of considerable interest when other problems are considered in addition to the routing efficiency (e.g., minimum remaining bandwidth, minimum remaining energy,...)

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks

    Full text link
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Yet, connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called {\em journeys}). Attempting to optimize the selection of the journeys in these networks naturally leads to the study of three cases: shortest (minimum hop), fastest (minimum duration), and foremost (earliest arrival) journeys. Efficient centralized algorithms exists to compute all cases, when the full knowledge of the network evolution is given. In this paper, we study the {\em distributed} counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each of these problems requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the problems become gradually feasible: graphs in which the re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent} (B), or {\em periodic} (P), together with specific knowledge that are respectively nn (the number of nodes), Δ\Delta (a bound on the recurrence time), and pp (the period). In these classes it is not required that all pairs of nodes get in contact -- only that the overall {\em footprint} of the graph is connected over time. Our results, together with the strict inclusion between PP, BB, and RR, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of RnR_n, BΔB_\Delta, and PpP_p also form a strict hierarchy

    On the Throughput-Delay Trade-off in Georouting Networks

    Get PDF
    We study the scaling properties of a georouting scheme in a wireless multi-hop network of nn mobile nodes. Our aim is to increase the network capacity quasi linearly with nn while keeping the average delay bounded. In our model, mobile nodes move according to an i.i.d. random walk with velocity vv and transmit packets to randomly chosen destinations. The average packet delivery delay of our scheme is of order 1/v1/v and it achieves the network capacity of order nlognloglogn\frac{n}{\log n\log\log n}. This shows a practical throughput-delay trade-off, in particular when compared with the seminal result of Gupta and Kumar which shows network capacity of order n/logn\sqrt{n/\log n} and negligible delay and the groundbreaking result of Grossglausser and Tse which achieves network capacity of order nn but with an average delay of order n/v\sqrt{n}/v. We confirm the generality of our analytical results using simulations under various interference models.Comment: This work has been submitted to IEEE INFOCOM 201

    Information Propagation Speed in Mobile and Delay Tolerant Networks

    Get PDF
    Recent research has highlighted the necessity of developing routing protocols for mobile ad hoc networks where end-to-end multi-hop paths may not exist and communication routes may only be available through time and mobility. Depending on the context, these networks are commonly referred as Intermittently Connected Mobile Networks (ICNs) or Delay/Disruption Tolerant Networks (DTNs). Conversely, little is known about the inherent properties of such networks, and consequently, performance evaluations are often limited to comparative simulations (using mobility models or actual traces). The goal of this paper is to increase our understanding of possible performances of DTNs. After introducing our formal model, we use analytical tools to derive theoretical upper-bounds of the information propagation speed in wireless mobile networks. We also present some numerical simulations to illustrate the accuracy of the bounds in numerous scenarios

    Asynchronous Rumor Spreading in Dynamic Graphs

    Get PDF
    corecore